私は最近、Kafak のソース コードをいくつか研究し、Kafak の改良されたバイナリ検索アルゴリズムを皆さんと共有したいと思います。バイナリ検索はすべてのプログラマーが習得すべき基本的なアルゴリズムであり、Kafka がバイナリ検索をどのように改善して独自のシナリオに適用するかを学ぶことは価値があります。 Kafka はインデックス検索シナリオにバイナリ検索を適用するため、この記事ではまず Kafka のログ構造とインデックスについて簡単に紹介します。 Kafak では、メッセージはログの形式で保存されます。各ログは、実際には複数のログ セグメントを含むフォルダーです。ログ セグメントとは、次の図に示すように、メッセージ ログ ファイルと、同じファイル名 (開始オフセット) を持つ 4 つのインデックス ファイルを指します。 メッセージはメッセージ ログ ファイルに追加形式で保存され、各メッセージには一意のオフセットがあります。メッセージを検索する場合、インデックス ファイルを使用して検索します。クエリがオフセットに基づいている場合、メッセージの検索にはオフセット インデックス ファイルが使用されます。インデックスクエリの議論を容易にするために、以下の議論は変位インデックスの背景に基づいて行われます。変位インデックスの本質は、オフセットと対応するディスクの物理的な位置を格納するバイト配列です。ここで、オフセットとディスクの物理的な位置は 4 バイトに固定されており、次の図に示すように、8 バイトごとにキーと値のペアとして考えることができます。 インデックス構造を明確に理解できたので、この記事のテーマである「バイナリ検索」に正式に進むことができます。インデックス項目の配列とターゲット オフセットを指定すると、次のコードを記述できます。
上記のコードでは、通常のバイナリ検索を使用しています。これがどのような問題を引き起こす可能性があるか見てみましょう。各インデックス項目のサイズは 4B ですが、オペレーティング システムがメモリにアクセスする最小単位はページです。ページは通常 4KB (4096B) で、512 個のインデックス項目が含まれます。インデックス内の指定されたオフセットを見つけることは、オペレーティング システムがメモリにアクセスしたときに指定されたオフセットが配置されているページを見つけることになります。次の図に示すように、インデックス サイズが 13 ページであると仮定します。 Kafka は通常、メッセージを読み取るときに最新のオフセットを読み取るため、クエリされるページは末尾、つまりページ 12 に集中します。次に、上記のコードを組み合わせて、最新のオフセットをクエリするときにどのページにアクセスされるかを確認します。バイナリ検索によれば、ページ 6、9、11、12 が順番に訪問されます。 Kafka が受信するメッセージ数が増えると、インデックス ファイルも 13 ページまで増加します。このとき、バイナリ検索に従って、7、10、12、13 ページが順番にアクセスされます。 訪問したページが前のページとは全く異なっていることがわかります。以前は、ページが 12 しかなかったため、Kafka はインデックスを読み取るときにページ 6、9、11、12 に頻繁にアクセスしていました。ただし、Kafka は速度を上げるために mmap を使用するため、すべての読み取りおよび書き込み操作はオペレーティング システムのページ キャッシュを経由するため、ページ 6、9、11、および 12 はディスクの読み込みを回避するためにページ キャッシュにキャッシュされます。ただし、ページ 13 を増やすと、ページ 7、10、12、13 にアクセスする必要があります。ページ 7 と 10 は長い間アクセスされていないため (最近のオペレーティング システムではページ キャッシュの管理に LRU またはその派生形式が使用されています)、ページ キャッシュ外になっている可能性があり、ページ フォールト割り込みが発生します (スレッドは、ページ キャッシュにキャッシュされていないディスクからのデータの読み込みを待機してブロックされます)。 Kafka の公式テストでは、この状況により数ミリ秒から 1 秒の範囲の遅延が発生します。 上記の状況を考慮して、Kafka はバイナリ検索を改良しました。通常、データはインデックスの末尾から読み取られます。次に、インデックスの最後の 8192B (8KB) を「ホット ゾーン」に、残りを「コールド ゾーン」に分割し、それぞれに対してバイナリ検索を実行します。コードは次のように実装されます。
これの利点は、テールが頻繁にクエリされる場合、テール ページは基本的にページ キャッシュ内にあるため、ページ フォールトによる中断を回避できることです。 前の例を使って見てみましょう。各ページには最大 512 個のインデックス項目が含まれるため、最後の 1024 個のインデックス項目を含むページはホット領域と見なされます。次に、ページ 12 がいっぱいでない場合は、ページ 10、11、および 12 がホット エリアであると判断されます。ページ 12 がちょうどいっぱいになると、ページ 11 と 12 がホット エリアであると判断されます。ページ 13 が増加していっぱいでない場合は、ページ 11、12、および 13 がホット領域であると判断されます。最新のメッセージを読んでいると仮定すると、ホットゾーンでのバイナリ検索は次のようになります。 ページ 12 がいっぱいでない場合は、ページ 11 と 12 が順番にアクセスされます。ページ 12 がいっぱいになると、アクセスしたページにも同じ状況が適用されます。ページ 13 が表示されると、ページ 12 とページ 13 が順番にアクセスされ、長時間アクセスされていないページにはアクセスされなくなるため、ページ フォールトによる中断を効果的に回避できます。 ホットゾーンのサイズが 8192 バイトに設定されている理由については、公式の説明では、これが適切な値であるということになります。 ホット ゾーン内のページ数が 3 以下になるように十分小さい場合、バイナリ検索で使用されるページはページ キャッシュ内にある可能性が高くなります。つまり、設定値が大きすぎると、ホットゾーンのページがページ キャッシュに含まれなくなる可能性があります。 これは、4MB のメッセージ データをカバーするのに十分な大きさ (8192 バイト、または変位インデックスの場合は 1024 個のインデックス エントリ) であり、ほとんどの同期ノードがホット ゾーンでクエリを実行するのに十分です。 最後に一言でまとめると、Kafka インデックスで通常のバイナリ検索を使用すると、ページ欠落の中断が発生し、遅延が発生します。また、ほとんどのクエリが末尾に集中するため、インデックス領域をホット領域とコールド領域に分割し、別々に検索することで、ホット領域のページが可能な限りページキャッシュ内にあるようにすることができ、ページ欠落による中断を回避することができます。 |
<<: Scality: コンテナ化とクラウドネイティブアプリケーションが2021年のデータストレージ環境を定義する
SEO にとって、ソフト記事は非常に効果的なプロモーション方法であるだけでなく、外部リンクを増やすた...
新華網、北京、4月2日(周文林記者)Weiboでのワンストップショッピングはもはや遠い夢ではない。オ...
ウェブサイトが成功したいのであれば、当然、充実したコンテンツが欠かせません。eコマースプロジェクトを...
ニュース記事が含まれない理由についての簡単な説明社内の最適化担当者として、最近多くの編集者から、なぜ...
本日、Pujiang は、Win インターネット マーケティング オペレーティング システムにおける...
多くのウェブマスターは、Baiduスナップショットについて非常に懸念しています。多くの友人が、ウェブ...
過去 1 ~ 2 か月で、SEO 業界で非常に人気が高まった SEO トレーニング - seopas...
テンセントといえば、誰もが知っているように、同社は中国最大のインターネット企業であり、時価総額は30...
進化するテクノロジー環境において、企業はクラウドベースの経済モデルがもたらす大きなチャンスをますます...
ウェブサイトの運営で遭遇する問題は、誰にとっても最大の頭痛の種ですが、特に、ウェブサイトを最適化する...
ウェブサイトの重さはウェブサイトのコンテンツに直接左右されることを認めなければなりません。ウェブサイ...
Hewlett Packard Enterprise 傘下の Aruba は、企業のクラウド、IoT...
近年、接続デバイスの数が急増し、膨大な量のデータが生成されています。この成長に伴い、従来の集中型コン...
金融とテクノロジーの組み合わせにより、金融サービスの境界が大幅に拡大し、包括的な金融が多数の小規模お...
最近、筆者は外部リンク記事を投稿する際に非常に興味深い現象を発見しました。私の日々の仕事は主に機密情...